MATERIAL DATASHEET

EXTRUDED PROFILES EN AW 6005A [AlSiMg(A)]

The aluminum alloy EN AW-6005A belongs to the 6000 series and consists of aluminum, magnesium and silicon. This alloy is characterized by a medium to high strength, which is above that of EN AW-6060, but below the strength of EN AW-6082. EN AW-6005A offers good corrosion resistance and is easy to extrude, allowing even complex profiles to be produced efficiently. It welds well and offers moderate machinability, making it a versatile option for various applications.

Typical applications of EN AW-6005A are:

- Construction industry: load-bearing profiles, posts and beams used in architectural structures and scaffolding
- Transportation: Guard rails, roof racks and structures for trailers as well as rail systems
- Mechanical engineering: Elements that require medium load-bearing capacity and corrosion resistance, such as frames and housings
- Energy technology: Components of solar systems and mast structures for energy distribution

Chemical composition (according to EN 573-3:2013 in %)

Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	Pb	Sn	Sonstige
0,50 - 0,90	0,35	0,30	0,50	0,40 - 0,70	0,30	0,20	0,10	0	0	max. 0,15

Mechanical properties (according to EN 755-2:2016, minimum values)

Temper	Thickness [mm]	R _{₽0,2} [MPa]	R _m [MPa]	A [%]	A₅₀ [%]
T4	t ≤ 25	60	120	16	14
TS	t ≤ 5	120	160	8	6
13	5 < t ≤ 25	100	140	8	6
те	t ≤ 3	150	190	8	6
10	5 < t ≤ 25	140	170	8	6
T64	t ≤ 15	120	180	12	10
тее	t ≤ 5	160	215	8	6
100	5 < t ≤ 25	150	195	8	6

Temper descriptions

T4	Solution heat-treated and naturally aged
T5	Cooled from an elavated temperature shaping process and then artificially aged
Т6	Solution heat-treated and then artificially aged
T64	Solution heat-treated and then artificially aged in underaging conditions to improve formability
тее	Solution heat-treated and then artificially aged
100	mechanical property level higher than T6 achieved through special control of the process

Reference values for physical properties

Density [g/cm³]	Elastic modulus [GPa]	Thermal conductivity [W/m²K]	Thermal expansion [K * 10 ⁶] 20°C – 100°C	Specific heat [J / KG * K]	Electrical conductivity [m/Ω*mm ²]	Shear modulus [GPa]
2,70	69,5	200-220	23,4	898	34-38	26,1

Other data (empirical values)

Mechanical processing

Milling / Turnir	ng 3	
Eroding	2	

Forming

Bending	3	(Zustand T4)	
Upsetting	3	(Zustand 0)	
Pressure forming	3	(Zustand 0)	

Welding

Gas	3	
WIG	2	
MIG	2	
Resistance welding	2	

Solder

Brazing with flux	2	
Brazing without flux	2	
Soft with flux	2	

1 - Very good | 2 - Good | 3 - Moderate | 4 - Poor | 5 - Unsuitable

Approvals

W. Hartmann & Co. GmbH – Möllner Landstraße 107 – 22113 Oststeinbek – Germany – http://www.hartmann-metalle.de Stand: 13.11.2024

Our data sheets contain non-binding information for guidance only. Liability for this is excluded. We reserve the right to make changes to standards and specified values. Only the provisions of our order confirmation are binding. With regard to anodizability, we would like to point out that no liability is assumed for the anodizing result and the colour formation in the decorative area. We also accept no liability for corrosion resistance. Special agreements must be made in writing.

Surface treatment

Technical anodizing	1	
Decorative anodizing	2	
Powder coating	1	
Wet painting	1	

Corrosion resistance

Normal climate	1	
Sea climate	2	