MATERIAL DATASHEET

EXTRUDED PROFILES EN AW 6060 [AlMgSi0,5]

The EN AW-6060 aluminum alloy belongs to the 6000 series, which is produced on the basis of aluminum, magnesium and silicon. As a typical extrusion alloy, it is easy to form, has excellent extrusion properties and offers medium to high corrosion resistance. It is characterized by a moderate strength, which is lower than that of the related alloy EN AW-6063, but enables a very good surface quality.

Typical applications of EN AW-6060 are:

- Construction industry: window frames, façade elements, doors and other architectural profiles
- Furniture construction: tubes; structures and decorative elements in pieces of furniture
- Automotive industry: trim strips, lightweight construction parts and cooling systems
- General mechanical engineering: lightweight constructions where good corrosion resistance is required

Chemical composition (according to EN 573-3:2013 in %)

Si 0,30 - 0,60 Fe

Cu

Mn

Mg

Cr

Zn

Ti

Pb S

5n Sor

Sonstige

Mechanical properties (according to EN 755-2:2016, minimum values)

			•		
Temper	Thickness [mm]	R _{P0,2} [MPa]	R _m [MPa]	A [%]	A ₅₀ [%]
T4	t ≤ 25	60	120	16	14
T5	t ≤ 5	120	160	8	6
	5 < t ≤ 25	100	140	8	6
Т6	t ≤ 3	150	190	8	6
	5 < t ≤ 25	140	170	8	6
T64	t ≤ 15	120	180	12	10
T66	t ≤ 5	160	215	8	6
	5 < t ≤ 25	150	195	8	6

Temper descriptions

T4	Solution heat-treated and naturally aged
T5	Cooled from an elavated temperature shaping process and then artificially aged
Т6	Solution heat-treated and then artificially aged
T64	Solution heat-treated and then artificially aged in underaging conditions to improve formability
T66	Solution heat-treated and then artificially aged
100	mechanical property level higher than T6 achieved through special control of the process

Reference values for physical properties

Density [g/cm³]	Elastic modulus [GPa]	Thermal conductivity [W/m²K]	Thermal expansion [K * 10 ⁶] 20°C – 100°C	Specific heat [J / KG * K]	Electrical conductivity [m/Ω*mm ²]	Shear modulus [GPa]
2,70	69,5	200-220	23,4	898	34-38	26,1

Other data (empirical values)

Mechanical proce	essing	9
Milling / Turning	2-3	
Eroding	1	
Forming		
Bending	3	(Zustand T4)
Upsetting	2	(Zustand 0)
Pressure forming	2	(Zustand 0)
Welding		
Gas	3	
WIG	2	
MIG	2	
Resistance welding	2	
Solder		
Brazing with flux	2	
Brazing without flux	2	
Soft with flux	1	

Surface	+	
SHIFTACE	Treatme	nт

Technical anodizing	1
Decorative anodizing	1 – 2
Powder coating	1
Wet painting	1

Corrosion resistance

Normal climate	1	
Sea climate	2	

1 - Very good | 2 - Good | 3 - Moderate | 4 - Poor | 5 - Unsuitable

Zulassungen

W. Hartmann & Co. GmbH – Möllner Landstraße 107 – 22113 Oststeinbek – Germany – http://www.hartmann-metalle.de Stand: 13.11.2024

Our data sheets contain non-binding information for guidance only. Liability for this is excluded. We reserve the right to make changes to standards and specified values. Only the provisions of our order confirmation are binding. With regard to anodizability, we would like to point out that no liability is assumed for the anodizing result and the colour formation in the decorative area. We also accept no liability for corrosion resistance. Special agreements must be made in writing.