WERKSTOFFDATENBLATT

STRANGGEPRESSTE PROFILE EN AW 6060 [AlMgSi0,5]

Die Aluminiumlegierung EN AW-6060 gehört zur 6000er-Serie, die auf der Basis von Aluminium, Magnesium und Silizium hergestellt wird. Als typische Strangpresslegierung ist diese gut formbar, lässt sich ausgezeichnet extrudieren und bietet eine mittlere bis hohe Korrosionsbeständigkeit. Sie zeichnet sich durch eine moderate Festigkeit aus, die geringer ist als bei der verwandten Legierung EN AW-6063, aber eine sehr gute Oberflächenqualität ermöglicht.

Typische Anwendungen von EN AW-6060 sind:

- Bauindustrie: Fensterrahmen, Fassadenelemente, Türen und andere architektonische Profile
- Möbelbau: Rohre; Strukturen und Dekorelemente in Möbelstücken
- Automobilindustrie: Zierleisten, leichte Konstruktionsteile und Kühlsysteme
- Allgemeiner Maschinenbau: leichte Konstruktionen, bei denen eine gute Korrosionsbeständigkeit erforderlich ist

Chemische Zusammensetzung (nach EN 573-3:2013 in %)

Si Fe Cu Mn Mg Cr Zn Ti max. 0,10 Sonstige max. 0,10 Mg 0,35 - 0,60 Cr max. 0,05 Cr max. 0,15 Cr

Mechanische Eigenschaften (nach EN 755-2:2016, Mindestwerte)

		-			
Zustand	Wanddicke [mm]	R _{P0,2} [MPa]	R _m [MPa]	A [%]	A ₅₀ [%]
T4	t ≤ 25	60	120	16	14
TE	t ≤ 5	120	160	8	6
1.3	5 < t ≤ 25	100	140	8	6
T6	t ≤ 3	150	190	8	6
10	5 < t ≤ 25	140	170	8	6
T64	t ≤ 15	120	180	12	10
T66	t ≤ 5	160	215	8	6
100	5 < t ≤ 25	150	195	8	6

Zustandsbeschreibung

	T4	Lösungsgeglüht und kaltausgelagert auf einen weitgehend stabilen Zustand
	T5	Abgeschreckt aus der Warmumformtemperatur und warmausgelagert
	Т6	Lösungsgeglüht und warmausgelagert
ĺ	T64	Lösungsgeglüht und zur Verbesserung der Formbarkeit nicht vollständig warmausgelagert
T66	T66	Lösungsgeglüht und warmausgelagert
	100	bessere mechanische Eigenschaften als T6 durch spezielle Kontrolle des Verfahrens

Anhaltswerte für physikalische Eigenschaften

Dichte [g/cm³]	E-Modul [GPa]	Wärmeleitfähigkeit [W/m²K]	Wärmeausdehnung [K * 10 ⁶] 20°C – 100°C	Spezifische Wärme [J / KG * K]	Leitfähigkeit [m/Ω*mm²]	Schubmodul [GPa]
2,70	69,5	200-220	23,4	898	34-38	26,1

Sonstige Daten (Erfahrungswerte)

Bearbeitung			
Fräsen / Drehen	2-3		
Erodieren	1		
Umformen			
Biegen	3	(Zustand T4)	
Stauchen	2	(Zustand 0)	
Fließpressen	2	(Zustand 0)	
Schweißen			
Gas	3		
WIG	2		
MIG	2		
Reibschweißen	2		
Löten			
Hart mit FM	2		
Hart ohne FM	2		
Weich mit FM	1		

Obernach	enber	nandiung	
Technisches	Eloxal	1	
Dekoratives		1-2	

Dekoratives Eloxal1-2Pulverbeschichten1Nasslackieren1

Korrosionsbeständigkeit

Normales Klima	1	
Seeklima	2	

1 - Sehr Gut | 2 - Gut | 3 - Mäßig | 4 - Schlecht | 5 - Ungeeignet

Zulassungen

W. Hartmann & Co. GmbH – Möllner Landstraße 107 – 22113 Oststeinbek – Germany – http://www.hartmann-metalle.de

Unsere Datenblätter enthalten unverbindliche Angaben, die lediglich als Orientierung dienen. Eine Haftung dafür wird ausgeschlossen. Änderungen in Normen und angegebenen Werten bleiben vorbehalten. Verbindlich sind ausschließlich die Bestimmungen unserer Auftragsbestätigung. Hinsichtlich der Anodisierbarkeit weisen wir darauf hin, dass für das Anodisierergebnis und die Farbausbildung im dekorativen Bereich keine Haftung übernommen wird. Ebenso übernehmen wir keine Haftung für die Korrosionsbeständigkeit. Besondere Vereinbarungen bedürfen der Schriftform.