MATERIAL DATASHEET

EXTRUDED PROFILES EN AW 6063 [AlMg0,7Si]

The aluminum alloy EN AW-6063 belongs to the 6000 series and is based on a combination of aluminum, magnesium and silicon. It is known as a high-quality extrusion alloy with excellent properties for extrusion. EN AW-6063 offers higher strength compared to the similar alloy EN AW-6060, but with equally good corrosion resistance and excellent surface properties. Thanks to the finely tuned balance between strength and workability, this alloy is particularly versatile.

Typical applications of EN AW-6063 are:

- Construction industry: production of window frames, architectural profiles, stair railings and balcony systems
- Transportation: Components in vehicle construction, including trailer structures, frames and body elements
- Mechanical engineering: parts for lightweight constructions, housings and structural profiles
- Electronics: heat sinks and housings for electronic devices, as the alloy has good thermal conductivity

Chemical composition (according to EN 573-3:2013 in %)

Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	Pb	Sn	Sonstige
0,20 - 0,60	0,35	0,10	0,10	0,45 - 0,90	0,10	0,10	0,10	0	0	max. 0,15

Mechanical properties (according to EN 755-2:2016, minimum values)

Temper	Thickness [mm]	 [MPa]		A [%]	A ₅₀ [%]
T4	t ≤ 25	65	130	14	12
TE	t ≤ 10	130	175	8	6
15	10 < t ≤ 25	110	160	7	5
Т6	t ≤ 10	170	215	8	6
10	10 < t ≤ 25	160	195	8	6
T64	t ≤ 15	120	180	12	10
T66	t ≤ 10	200	245	8	6
100	10 < t ≤ 25	180	225	8	6

Temper descriptions

T4	Solution heat-treated and naturally aged
Т5	Cooled from an elavated temperature shaping process and then artificially aged
Т6	Solution heat-treated and then artificially aged
T64	Solution heat-treated and then artificially aged in underaging conditions to improve formability
Т66	Solution heat-treated and then artificially aged
100	mechanical property level higher than T6 achieved through special control of the process

Reference values for physical properties

Density [g/cm³]	Elastic modulus [GPa]	Thermal conductivity [W/m²K]	Thermal expansion [K * 10 ⁶] 20°C – 100°C	Specific heat [J / KG * K]	Electrical conductivity [m/Ω*mm ²]	Shear modulus [GPa]
2,70	69	200-220	23,4	898	34-38	26,1

Other data (empirical values)

Mechanical processing

Milling / T	urning	2-3	
Eroding		1	

Forming

Bending	3	(Temper T4)
Upsetting	2	(Temper 0)
Pressure forming	2	(Temper 0)

Welding

Gas	3	
WIG	2	
MIG	2	
Resistance welding	2	

Solder

Brazing with flux	2	
Brazing without flux	2	
Soft with flux	1	

1 - Very good | 2 - Good | 3 - Moderate | 4 - Poor | 5 - Unsuitable

W. Hartmann & Co. GmbH – Möllner Landstraße 107 – 22113 Oststeinbek – Germany – http://www.hartmann-metalle.de Stand: 13.11.2024

Our data sheets contain non-binding information for guidance only. Liability for this is excluded. We reserve the right to make changes to standards and specified values. Only the provisions of our order confirmation are binding. With regard to anodizability, we would like to point out that no liability is assumed for the anodizing result and the colour formation in the decorative area. We also accept no liability for corrosion resistance. Special agreements must be made in writing.

Surface treatment

Technical anodizing	1
Decorative anodizing	1-2
Powder coating	1
Wet painting	1

Corrosion resistance

Normal climate	1
Sea climate	2